3.5.96 \(\int \frac {x}{(a+b x^3)^2 (c+d x^3)^{3/2}} \, dx\) [496]

Optimal. Leaf size=67 \[ \frac {x^2 \sqrt {1+\frac {d x^3}{c}} F_1\left (\frac {2}{3};2,\frac {3}{2};\frac {5}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{2 a^2 c \sqrt {c+d x^3}} \]

[Out]

1/2*x^2*AppellF1(2/3,2,3/2,5/3,-b*x^3/a,-d*x^3/c)*(1+d*x^3/c)^(1/2)/a^2/c/(d*x^3+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 67, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {525, 524} \begin {gather*} \frac {x^2 \sqrt {\frac {d x^3}{c}+1} F_1\left (\frac {2}{3};2,\frac {3}{2};\frac {5}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{2 a^2 c \sqrt {c+d x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

(x^2*Sqrt[1 + (d*x^3)/c]*AppellF1[2/3, 2, 3/2, 5/3, -((b*x^3)/a), -((d*x^3)/c)])/(2*a^2*c*Sqrt[c + d*x^3])

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 525

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPar
t[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {x}{\left (a+b x^3\right )^2 \left (c+d x^3\right )^{3/2}} \, dx &=\frac {\sqrt {1+\frac {d x^3}{c}} \int \frac {x}{\left (a+b x^3\right )^2 \left (1+\frac {d x^3}{c}\right )^{3/2}} \, dx}{c \sqrt {c+d x^3}}\\ &=\frac {x^2 \sqrt {1+\frac {d x^3}{c}} F_1\left (\frac {2}{3};2,\frac {3}{2};\frac {5}{3};-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{2 a^2 c \sqrt {c+d x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(216\) vs. \(2(67)=134\).
time = 10.18, size = 216, normalized size = 3.22 \begin {gather*} -\frac {x^2 \left (-10 a \left (2 a^2 d^2+2 a b d^2 x^3+b^2 c \left (c+d x^3\right )\right )+5 \left (-b^2 c^2+6 a b c d+a^2 d^2\right ) \left (a+b x^3\right ) \sqrt {1+\frac {d x^3}{c}} F_1\left (\frac {2}{3};\frac {1}{2},1;\frac {5}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+b d (b c+2 a d) x^3 \left (a+b x^3\right ) \sqrt {1+\frac {d x^3}{c}} F_1\left (\frac {5}{3};\frac {1}{2},1;\frac {8}{3};-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )}{30 a^2 c (b c-a d)^2 \left (a+b x^3\right ) \sqrt {c+d x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x]

[Out]

-1/30*(x^2*(-10*a*(2*a^2*d^2 + 2*a*b*d^2*x^3 + b^2*c*(c + d*x^3)) + 5*(-(b^2*c^2) + 6*a*b*c*d + a^2*d^2)*(a +
b*x^3)*Sqrt[1 + (d*x^3)/c]*AppellF1[2/3, 1/2, 1, 5/3, -((d*x^3)/c), -((b*x^3)/a)] + b*d*(b*c + 2*a*d)*x^3*(a +
 b*x^3)*Sqrt[1 + (d*x^3)/c]*AppellF1[5/3, 1/2, 1, 8/3, -((d*x^3)/c), -((b*x^3)/a)]))/(a^2*c*(b*c - a*d)^2*(a +
 b*x^3)*Sqrt[c + d*x^3])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 6.
time = 0.34, size = 986, normalized size = 14.72

method result size
default \(\text {Expression too large to display}\) \(986\)
elliptic \(\text {Expression too large to display}\) \(986\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(b*x^3+a)^2/(d*x^3+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/3*b^2/a/(a*d-b*c)^2*x^2*(d*x^3+c)^(1/2)/(b*x^3+a)+2/3*d^2*x^2/c/(a*d-b*c)^2/((x^3+c/d)*d)^(1/2)-2/3*I*(-1/6*
b*d/a/(a*d-b*c)^2-1/3*d^2/(a*d-b*c)^2/c)*3^(1/2)/d*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(
-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*
(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(
1/2)/(d*x^3+c)^(1/2)*((-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/d
*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)/(-
3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2))+1/d*(-c*d^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/
2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2)/d*(-c*d^2)^(1/3)
/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)))+1/18*I/a/d^2*b*2^(1/2)*sum((11*a*d-2*b*c)/(a*
d-b*c)^3/_alpha*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(
1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/
2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3^(1/2)*d-I*
3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2
/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1/2*b/d*(2*I*(-c*d^2)^(1/3)*
3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3
^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a)
)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+a)^2/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(x/((b*x^3 + a)^2*(d*x^3 + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+a)^2/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\left (a + b x^{3}\right )^{2} \left (c + d x^{3}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x**3+a)**2/(d*x**3+c)**(3/2),x)

[Out]

Integral(x/((a + b*x**3)**2*(c + d*x**3)**(3/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(b*x^3+a)^2/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

integrate(x/((b*x^3 + a)^2*(d*x^3 + c)^(3/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x}{{\left (b\,x^3+a\right )}^2\,{\left (d\,x^3+c\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/((a + b*x^3)^2*(c + d*x^3)^(3/2)),x)

[Out]

int(x/((a + b*x^3)^2*(c + d*x^3)^(3/2)), x)

________________________________________________________________________________________